Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

David J. Young,* Putra Manuaba, Peter C. Healy and Edward R. T. Tiekink

School of Science, Griffith University, Nathan, Queensland 4111, Australia

Correspondence e-mail:
d.young@griffith.edu.au

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{n}-\mathrm{C})=0.007 \AA$
Disorder in main residue
R factor $=0.051$
$w R$ factor $=0.157$
Data-to-parameter ratio $=10.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Tetrakis[4-(trifluoromethyl)phenyl]stannane

The Sn atom in the title compound, $\left[\mathrm{Sn}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~F}_{3}\right)_{4}\right]$, is located on a site of symmetry $\overline{4}$ and has tetrahedral geometry, with an $\mathrm{Sn}-\mathrm{C}$ bond distance of 2.149 (4) \AA, and $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ bond angles of 107.89 (19) and $112.7(4)^{\circ}$.

Comment

Interest in the structural chemistry of tetraaryltin(IV) compounds largely rests in delineating the principles of their crystal packing (e.g. Wharf \& Bélanger-Gariépy, 2003; Wharf \& Lebuis, 2003). A number of such compounds crystallize with the Sn atom located on a site of symmetry, $\overline{4}$, e.g. $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{Sn}$ (Engelhardt et al., 1982) and $\left(p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{4} \mathrm{Sn}$ (Karipides \& Wolfe, 1975). By contrast, $\left(p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{4} \mathrm{Sn}$ crystallizes in space group $P \overline{1}$, with no molecular symmetry $(\mathrm{Ng}, 1997)$.

In order to add to the database of relevant structures available for comparison, the title structure, $\left(p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{4} \mathrm{Sn}$, (I), a known compound (King et al., 1986), was investigated.

(I)

The Sn atom in (I) (Fig. 1) is located on a site of symmetry $\overline{4}$, and indeed the structure is isostructural with the aforementioned $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{Sn} \quad$ (Engelhardt et al., 1982) and (p $\left.\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{4} \mathrm{Sn}$ (Karipides \& Wolfe, 1975) structures. The unique $\mathrm{Sn}-\mathrm{C}$ bond distance is 2.149 (4) \AA and the two independent $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ bond angles are 107.89 (19) and 112.7 (4) ${ }^{\circ}$, indicating relatively minor distortions from an ideal tetrahedral geometry.

It has been proposed (Schürmann et al., 1999) that very weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions are responsible for the deviation from $\overline{4}$ symmetry in the structure of $\left(p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{4} \mathrm{Sn}(\mathrm{Ng}, 1997)$. This conclusion is consistent with previous combined experimental/theoretical studies that point to weak intermolecular interactions as being responsible for significant distortions of molecular structure in organotin systems (e.g. Buntine et al., 1998, 2003).

Experimental

The compound was prepared by reaction of activated magnesium $(2 \mathrm{~g})$ and p-bromotrifluoromethylphenyl bromide $(17.5 \mathrm{~g}, 0.08 \mathrm{~mol})$ in THF (150 ml). To this cold (273 K) mixture, anhydrous tin tetrachloride $(4.56 \mathrm{~g}, 0.018 \mathrm{~mol})$ in benzene (50 ml) was added dropwise.

Received 13 April 2005 Accepted 19 April 2005 Online 27 April 2005

The reaction mixture was refluxed for 1 h and filtered hot. The filtrate was evaporated under vacuum to give a precipitate of the compound, which was recrystallized from an ethanol solution to give colourless needles. Yield $9.17 \mathrm{~g}, 75 \%$. M.p. $422-423 \mathrm{~K}$ (literature $423-424 \mathrm{~K}$; King et al., 1986).

Crystal data

```
[Sn(C
\(M_{r}=699.12\)
Tetragonal, \(I \overline{4}\)
\(a=14.748\) (5) \(\AA\)
\(c=6.465\) (8) \(\AA\)
\(V=1406.1\) (18) \(\AA^{3}\)
\(Z=2\)
\(D_{x}=1.651 \mathrm{Mg} \mathrm{m}^{-3}\)
```


Data collection

> Rigaku AFC- $7 R$ diffractometer $\omega-2 \theta$ scans
> Absorption correction: ψ scan
> (North et al., 1968)
> $T_{\min }=0.695, T_{\max }=0.934$
> 944 measured reflections
> 883 independent reflections
> 567 reflections with $I>2 \sigma(I)$

Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051\)
\(w R\left(F^{2}\right)=0.157\)
\(S=0.98\)
883 reflections
88 parameters
H -atom parameters constrained
\(w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.1052 P)^{2}\right]\)
```

 where \(P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3\)
 H atoms were included in the riding-model approximation, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. High thermal motion was noted for the CF_{3} residue. This was modelled so that two sites were resolved for the F atoms, with site occupancies of 0.69 (4) and 0.31 (4) for the major and minor components, respectively. While this protocol resulted in $R\left(F^{2}\right.$, all data $)=0.082$, the data/parameter ratio was low, viz. 7.3, for the non-centrosymmetric space group. Another protocol, suggested by a referee, was one with considerably more restraints. Here, the six F components of the CF_{3} group were restrained to be coplanar, the displacement parameters of each pair of opposite disordered F atoms were made equal, and the $\mathrm{C}-\mathrm{F}$ and $\mathrm{F} \cdots \mathrm{F}^{\prime}$ distances were made approximately equal; the displacement parameters were restrained to be approximately equal. The ratio of the major-to-minor components of the F atoms refined to 0.681 (17):0.319 (17). The result of this refinement strategy was a higher value of $R\left(F^{2}\right.$, all data) of 0.099 but a higher data/parameter ratio, viz. 10.0, with a consequent improvement in the standard uncertainty values. The results of the latter refinement are reported here.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1996); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN for Windows.

Figure 1
The molecular structure and atomic numbering scheme. Displacement ellipsoids are shown at the 35% probability level. Only the major components of the disordered F atoms are shown. Unlabelled atoms are related to labelled atoms by the $\overline{4}$ symmetry.

AusAID (PM) and the Queensland Government, for the award of a Smart Returns Fellowship (ERTT), are thanked.

References

Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Buntine, M. A., Hall, V. J., Kosovel, F. J. \& Tiekink, E. R. T. (1998). J. Phys. Chem. A, 102, 2472-2482.
Buntine, M. A., Kosovel, F. J. \& Tiekink, E. R. T. (2003). CrystEngComm, 5, 331-336.
Engelhardt, L. M., Leung, L.-P., Raston, C. L. \& White, A. H. (1982). Aust. J. Chem. 35, 2383-2384.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Karipides, A. \& Wolfe, K. (1975). Acta Cryst. B31, 605-608.
King, B., Eckert, H., Denney, D. Z. \& Herber, R. H. (1986). Inorg. Chim. Acta, 122, 45-53.
Molecular Structure Corporation. (1996). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation. (1999). TEXSAN for Windows. Version 1.05. MSC, 9009 New Trails Drive. The Woodlands, TX 77381-5209, USA. Ng, S. W. (1997). Acta Cryst. C53, 273-274.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Schürmann, M., Silvestri, A., Ruisi, G., Girasolo, M. A., Paulsen, A. B., Huber, F. \& Barbieri, R. (1999). J. Organomet. Chem. 584, 293-300.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Wharf, I. \& Bélanger-Gariépy, F. (2003). Acta Cryst. E59, m661-m663.
Wharf, I. \& Lebuis, A.-M. (2003). Acta Cryst. E59, m794-m796.

