metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

David J. Young,* Putra Manuaba, Peter C. Healy and Edward R. T. Tiekink

School of Science, Griffith University, Nathan, Queensland 4111, Australia

Correspondence e-mail: d.young@griffith.edu.au

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (n–C) = 0.007 Å Disorder in main residue R factor = 0.051 wR factor = 0.157 Data-to-parameter ratio = 10.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetrakis[4-(trifluoromethyl)phenyl]stannane

The Sn atom in the title compound, $[Sn(C_7H_4F_3)_4]$, is located on a site of symmetry $\overline{4}$ and has tetrahedral geometry, with an Sn-C bond distance of 2.149 (4) Å, and C-Sn-C bond angles of 107.89 (19) and 112.7 (4)°. Received 13 April 2005 Accepted 19 April 2005 Online 27 April 2005

Comment

Interest in the structural chemistry of tetraaryltin(IV) compounds largely rests in delineating the principles of their crystal packing (*e.g.* Wharf & Bélanger-Gariépy, 2003; Wharf & Lebuis, 2003). A number of such compounds crystallize with the Sn atom located on a site of symmetry, $\overline{4}$, *e.g.* (C₆H₅)₄Sn (Engelhardt *et al.*, 1982) and (*p*-CH₃C₆H₄)₄Sn (Karipides & Wolfe, 1975). By contrast, (*p*-ClC₆H₄)₄Sn crystallizes in space group $P\overline{1}$, with no molecular symmetry (Ng, 1997).

In order to add to the database of relevant structures available for comparison, the title structure, $(p-CF_3C_6H_4)_4Sn$, (I), a known compound (King *et al.*, 1986), was investigated.

The Sn atom in (I) (Fig. 1) is located on a site of symmetry $\overline{4}$, and indeed the structure is isostructural with the aforementioned (C₆H₅)₄Sn (Engelhardt *et al.*, 1982) and (*p*-CH₃C₆H₄)₄Sn (Karipides & Wolfe, 1975) structures. The unique Sn-C bond distance is 2.149 (4) Å and the two independent C-Sn-C bond angles are 107.89 (19) and 112.7 (4)°, indicating relatively minor distortions from an ideal tetrahedral geometry.

It has been proposed (Schürmann *et al.*, 1999) that very weak $C-H\cdots$ Cl interactions are responsible for the deviation from $\overline{4}$ symmetry in the structure of $(p-\text{ClC}_6\text{H}_4)_4\text{Sn}$ (Ng, 1997). This conclusion is consistent with previous combined experimental/theoretical studies that point to weak intermolecular interactions as being responsible for significant distortions of molecular structure in organotin systems (*e.g.* Buntine *et al.*, 1998, 2003).

Experimental

The compound was prepared by reaction of activated magnesium (2 g) and *p*-bromotrifluoromethylphenyl bromide (17.5 g, 0.08 mol) in THF (150 ml). To this cold (273 K) mixture, anhydrous tin tetrachloride (4.56 g, 0.018 mol) in benzene (50 ml) was added dropwise.

© 2005 International Union of Crystallography

Printed in Great Britain - all rights reserved

Crystal data

 $[Sn(C_7H_4F_3)_4]$ $M_r = 699.12$ Tetragonal, $I\overline{4}$ a = 14.748 (5) Å c = 6.465 (8) Å V = 1406.1 (18) Å³ Z = 2 $D_x = 1.651$ Mg m⁻³

Data collection

Rigaku AFC-7*R* diffractometer ω -2 θ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.695$, $T_{max} = 0.934$ 949 measured reflections 883 independent reflections 567 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.157$ S = 0.98883 reflections 88 parameters H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1052P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ Mo $K\alpha$ radiation Cell parameters from 25 reflections $\theta = 9.5-12.0^{\circ}$ $\mu = 1.00 \text{ mm}^{-1}$ T = 293 (2) K Needle, colourless $0.40 \times 0.15 \times 0.07 \text{ mm}$

$$\begin{split} R_{\rm int} &= 0.039 \\ \theta_{\rm max} &= 27.5^{\circ} \\ h &= 0 \rightarrow 19 \\ k &= 0 \rightarrow 19 \\ l &= 0 \rightarrow 8 \\ 3 \text{ standard reflections} \\ \text{every 150 reflections} \\ \text{intensity decay: } 1.3\% \end{split}$$

 $\begin{array}{l} (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.72 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.73 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Extinction \ correction: \ none} \\ {\rm Absolute \ structure: \ Flack \ (1983), \ no} \\ {\rm Friedel \ pairs} \\ {\rm Flack \ parameter: \ 0.12 \ (12)} \end{array}$

H atoms were included in the riding-model approximation, with C-H distances of 0.93 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$. High thermal motion was noted for the CF₃ residue. This was modelled so that two sites were resolved for the F atoms, with site occupancies of 0.69 (4) and 0.31 (4) for the major and minor components, respectively. While this protocol resulted in $R(F^2, \text{ all data}) = 0.082$, the data/parameter ratio was low, viz. 7.3, for the non-centrosymmetric space group. Another protocol, suggested by a referee, was one with considerably more restraints. Here, the six F components of the CF₃ group were restrained to be coplanar, the displacement parameters of each pair of opposite disordered F atoms were made equal, and the C-F and $F \cdots F'$ distances were made approximately equal; the displacement parameters were restrained to be approximately equal. The ratio of the major-to-minor components of the F atoms refined to 0.681 (17):0.319 (17). The result of this refinement strategy was a higher value of $R(F^2, \text{ all data})$ of 0.099 but a higher data/parameter ratio, viz. 10.0, with a consequent improvement in the standard uncertainty values. The results of the latter refinement are reported here.

Data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1996); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *TEXSAN for Windows* (Molecular Structure Corporation, 1999); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *TEXSAN* for Windows.

Figure 1

The molecular structure and atomic numbering scheme. Displacement ellipsoids are shown at the 35% probability level. Only the major components of the disordered F atoms are shown. Unlabelled atoms are related to labelled atoms by the $\overline{4}$ symmetry.

AusAID (PM) and the Queensland Government, for the award of a Smart Returns Fellowship (ERTT), are thanked.

References

- Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Buntine, M. A., Hall, V. J., Kosovel, F. J. & Tiekink, E. R. T. (1998). J. Phys. Chem. A, 102, 2472–2482.
- Buntine, M. A., Kosovel, F. J. & Tiekink, E. R. T. (2003). CrystEngComm, 5, 331–336.
- Engelhardt, L. M., Leung, L.-P., Raston, C. L. & White, A. H. (1982). Aust. J. Chem. 35, 2383–2384.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Johnson, C. K. (1976). ORTEPH. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Karipides, A. & Wolfe, K. (1975). Acta Cryst. B31, 605-608.
- King, B., Eckert, H., Denney, D. Z. & Herber, R. H. (1986). *Inorg. Chim. Acta*, **122**, 45–53.
- Molecular Structure Corporation. (1996). *MSC/AFC Diffractometer Control Software*. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation. (1999). TEXSAN for Windows. Version 1.05. MSC, 9009 New Trails Drive. The Woodlands, TX 77381-5209, USA. Ng, S. W. (1997). Acta Cryst. C53, 273–274.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Schürmann, M., Silvestri, A., Ruisi, G., Girasolo, M. A., Paulsen, A. B., Huber, F. & Barbieri, R. (1999). J. Organomet. Chem. 584, 293–300.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Wharf, I. & Bélanger-Gariépy, F. (2003). Acta Cryst. E59, m661-m663.
- Wharf, I. & Lebuis, A.-M. (2003). Acta Cryst. E59, m794-m796.